

§ 16.1-2 Line Integrals

Introduction

- A Line Integral is an integral defined on a curve.

There are 4 equivalent ways to define a line integral, and they all mean the same thing:

Theorem: The following four are equivalent -

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F} \cdot \vec{v} \, dt = \int_C \vec{F} \cdot d\vec{r} = \int_C M \, dx + N \, dy + P \, dz$$

We make sense of each of these four expressions for Line Integral

- The first expression gives the meaning of a line integral →

$$\int_C \vec{F} \cdot \vec{T} ds$$

In physics this is called

"the work done by the force \vec{F} along the curve C "

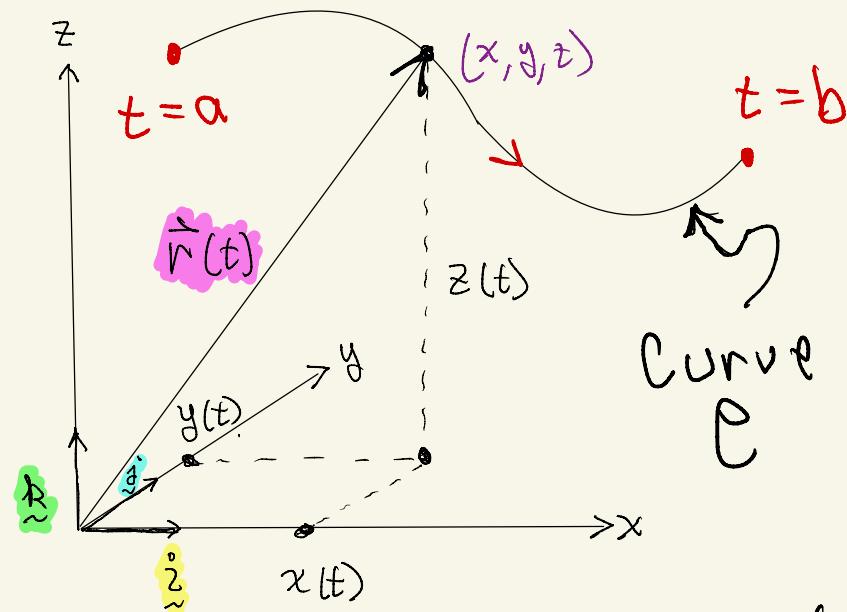
Mathematically it is the "Total amount of \vec{F} pointing tangent to the curve C "

- To define $\int_C \vec{F} \cdot \vec{T} ds$, recall how we describe a curve C with orientation

$C: \vec{r} = \vec{r}(t)$
 $a \leq t \leq b$

To describe a curve you must give a parameterization

$$\vec{r}(t) = x(t) \hat{i} + y(t) \hat{j} + z(t) \hat{k}$$



(oriented correctly)

A curve C is given by a parameterization ③

$$\vec{r}(t) = (x(t), y(t), z(t)), a \leq t \leq b$$

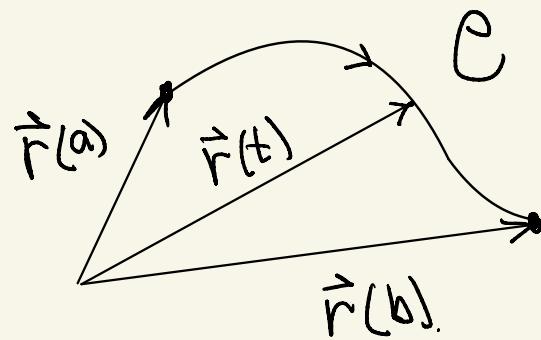
Notation:

$$\vec{x} = \vec{(x, y, z)}$$

There are many ways to parameterize the same curve C

I.e., given $\vec{r}(t), a \leq t \leq b$,

if $t = \phi(u)$,



then $\vec{r}(\phi(u)) = (\vec{r} \circ \phi)(u)$ is another parameterization

As long as $\phi'(u) > 0$, one parameterization is as good as another.

- Mathematicians think of different parameterizations of a curve as different coordinate systems on the same curve C

I.e., they give you a way to "name" the points on C by number t : $P = \vec{r}(t)$

point on curve \nearrow

\nwarrow name

- There is one special parameterization determined by the curve: Namely, arc length parameterization (4)

$$s = \int_a^t \|\vec{v}(\xi)\| d\xi = \phi(t)$$

Problem: You typically need to start with a parameterization $\vec{r}(t)$ to recover $\phi(t)$ and thereby obtain the arc length parameterization

$$\vec{r}(s) = \vec{r}(\phi^{-1}(s)) \quad 0 \leq s \leq \phi^{-1}(b)$$

- Important Point: The line integral is independent of parameterization in the sense that it can be computed in different coordinate systems (parameterizations)

but you always get the same answer!

- End Introduction to Line Integrals

We begin by defining the line integral in terms of the arclength parameterization -

Given - A vector field \vec{F} & curve ℓ

$$\vec{F}(x, y, z) = M(x, y, z) \hat{i} + N(x, y, z) \hat{j} + P(x, y, z) \hat{k}$$

$$= \overrightarrow{(M, N, P)}$$

(Think of \vec{F} as a force field)

Mathematically: $\vec{F}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$

$$(x, y, z) \mapsto \overrightarrow{(M, N, P)}$$

" \vec{F} assigns a vector

input

$\overrightarrow{(M, N, P)}$ to each point

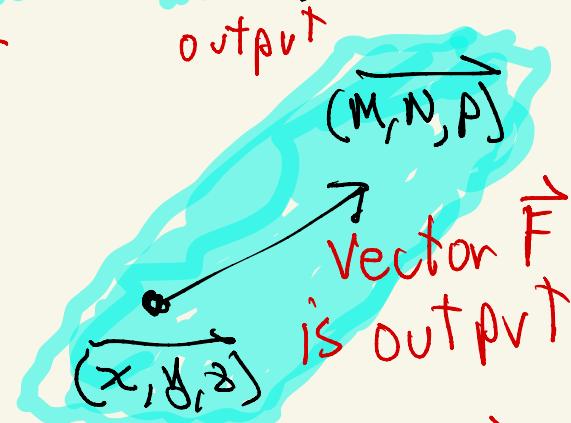
output

$(x, y, z) \in \mathbb{R}^3$." To be

consistent, we treat

inputs & outputs as vectors...

so treat (x, y, z) as a vector $\overrightarrow{(x, y, z)}$

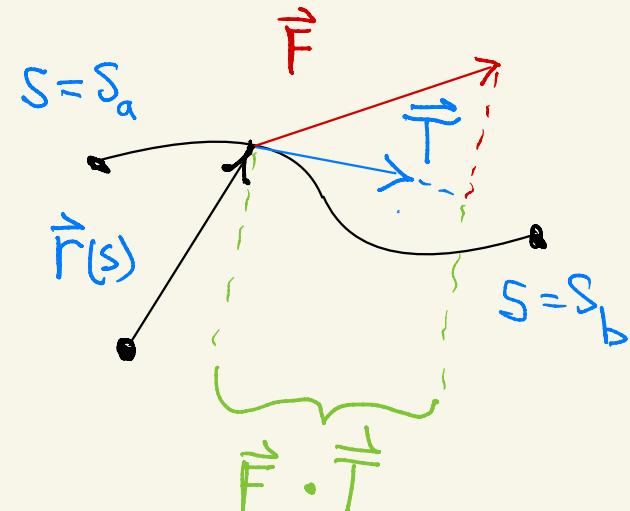


Base point \vec{r}
is the input

Steps to defining the Line Integral $\int \vec{F} \cdot \vec{T} ds$ (6)

(1) Use the arclength parameterization

- $\vec{F} = \vec{F}(\vec{r}(s))$ is the "force" at $\vec{r}(s)$
- $\vec{T} = \vec{T}(\vec{r}(s))$ is the unit tangent at $\vec{r}(s)$
- $\vec{F} \cdot \vec{T} = \vec{F}(\vec{r}(s)) \cdot \vec{T}(\vec{r}(s))$ is the length of the component of \vec{F} in direction \vec{T}



(2) Discretize to define a Riemann Sum

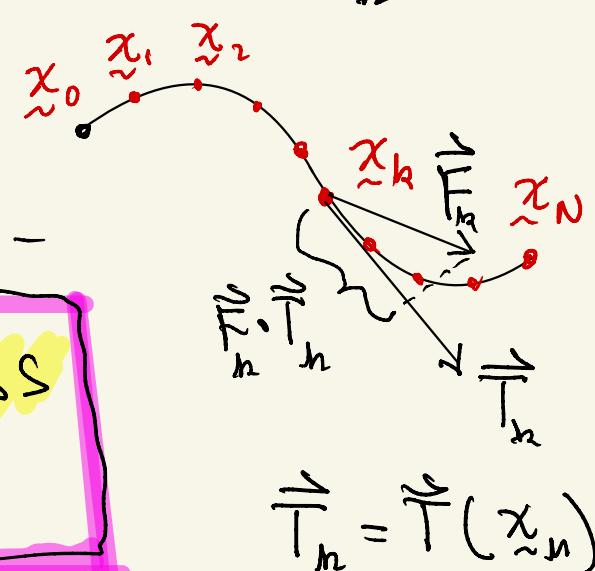
$$s_0 = s_a < s_1 < s_2 < \dots < s_N = s_b, \quad \Delta s = \frac{s_b - s_a}{N}$$

$$s_k = s_a + k \Delta s, \quad \vec{x}_k = \vec{r}(s_k)$$

$$\vec{F}_k = \vec{F}(\vec{x}_k)$$

(3) Define Integral as the limit of Riemann Sum -

$$\int \vec{F} \cdot \vec{T} ds = \lim_{N \rightarrow \infty} \sum_{k=1}^N \vec{F}_k \cdot \vec{T}_k \Delta s$$

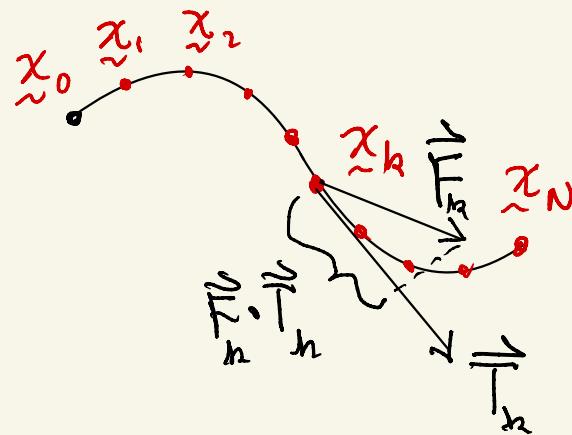


Defn:

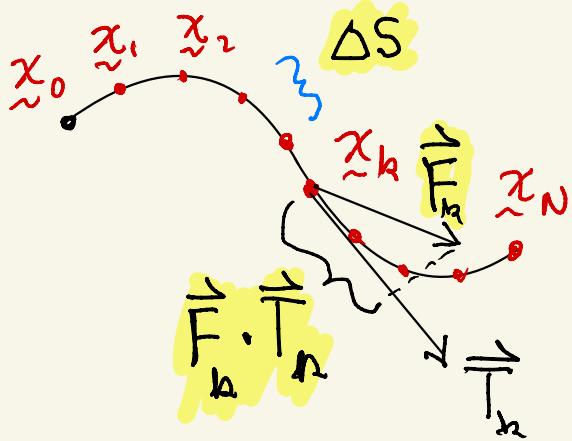
$$\int_C \mathbf{F} \cdot d\mathbf{s} = \lim_{N \rightarrow \infty} \sum_{k=1}^N \mathbf{F}_{\frac{k}{N}} \cdot \mathbf{T}_{\frac{k}{N}} \Delta s$$

7

- This gives the simplest most direct meaning of the Line Integral as "The total amount of \mathbf{F} pointing tangent to C "
- In Physics this is the "sum of the component of force in direction of displacement times displacement, summed along C in a limiting sense" i.e., the "Total Work Done by \mathbf{F} along C "
- Note: Since arc length parameter is unique, $\int_C \mathbf{F} \cdot d\mathbf{s}$ depends only on force \mathbf{F} & curve C



$$\int_C \vec{F} \cdot \vec{T} ds = \lim_{N \rightarrow \infty} \sum_{k=1}^N \vec{F}_k \cdot \vec{T}_k \Delta s$$



Component of the Force in direction of displacement

Displacement

Conclude: In Physics, Work is Force \times Displacement. When the force is changing along a variable curve, we break the work up into approximate constant force $\vec{F}_k \cdot \vec{T}_k$ times displacement Δs & sum \Rightarrow Work Done is a Line Integral

• Problem: How do you compute the line integral?

Answer: Use a parameterization!

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{v}(t) \, dt$$

Gives the meaning of line integral as the work done

Tells how to compute the line integral - a Math 21B integral

Important - Each parameterization gives you a different Math 21B integral, but the answer is the same number - namely "The work done by \vec{F} along C "

• How it works: Assume an oriented curve C is given by parameterization $\vec{r}(t)$ $a \leq t \leq b$

$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} \quad a \leq t \leq b$$

(1) Discretize $[a, b]$

$$t_0 = a < t_1 < t_2 < \dots < t_N = b, \quad \Delta t = \frac{b-a}{N}$$

(2) Convert to arc length $ds = \|\vec{v}(t)\| dt$

$$\text{So } \Delta s \approx \|\vec{v}(t_m)\| \Delta t$$

(3) Construct Riemann Sum for Line Integral

$$\int_C \vec{F} \cdot \vec{T} ds = \lim_{N \rightarrow \infty} \sum_{k=1}^N \vec{F}_k \cdot \vec{T}_k \Delta s_k$$

(4) Write as a Riemann Sum in t :

$$\vec{F}_k = \vec{F}(\vec{r}(t_k)), \quad \vec{T}_k = \frac{\vec{v}(t_k)}{\|\vec{v}(t_k)\|}, \quad \Delta s = \|\vec{v}(t_k)\| \Delta t$$

Riemann Sum in t

$$\sum_{k=1}^N \vec{F}_k \cdot \vec{T}_k \Delta s_k = \sum_{k=1}^N \vec{F}(\vec{r}(t_k)) \cdot \frac{\vec{v}(t_k)}{\|\vec{v}(t_k)\|} \cdot \|\vec{v}(t_k)\| \Delta t$$

$$(5) \int_C \vec{F} \cdot \vec{T} ds = \lim_{N \rightarrow \infty} \sum_{k=1}^N \vec{F}(\vec{r}(t_k)) \cdot \vec{v}(t_k) \Delta t = \int_a^b \vec{F} \cdot \vec{v} dt$$

(Same answer for any parameterization)

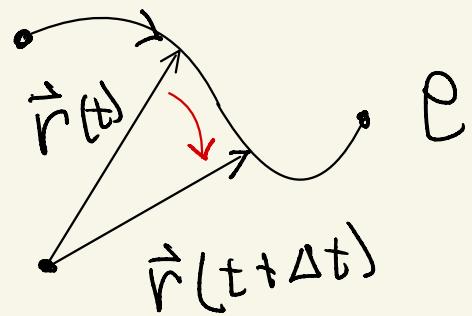
A Math 21B
Integral

Conclude:

$$\int_C \vec{F} \cdot \vec{T} ds = \int_a^b \vec{F}(\vec{r}(t)) \cdot \vec{v}(t) dt$$

11

- Holds for any parameterization which respects the orientation of C (I.e., $\vec{r}(t)$ moves forward on C as t increases)
- $\int_C \vec{F} \cdot \vec{T} ds$ gives the meaning
- $\int_a^b \vec{F} \cdot \vec{v} dt$ tells how to compute it
- Since $\int_C \vec{F} \cdot \vec{T} ds$ is defined in terms of arclength, it has a single value independent of parameterization -



Conclude: Every parameterization gives the same answer

10

Example ①

12

Use Leibniz theory of differentials

to "prove" that

$$\int_C \vec{F} \cdot \vec{T} ds = \int_C \vec{F} \cdot \vec{v} dt = \int_C \vec{F} \cdot \vec{dr} = \int_C M dx + N dy + P dz$$

Soln!

$$\frac{ds}{dt} = \|\vec{v}\| \quad \text{so} \quad ds = \|\vec{v}\| dt$$

$$\vec{v} = \frac{ds}{dt} \vec{T} \quad \text{so} \quad \vec{T} ds = \vec{v} dt$$

$$\vec{v} = \frac{d\vec{r}}{dt} \quad \text{so} \quad d\vec{r} = \vec{v} dt$$

$$\frac{d\vec{r}}{dt} = \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right) \quad \text{so} \quad d\vec{r} = (dx, dy, dz)$$

Thus:

$$\int_C \vec{F} \cdot \vec{T} ds = \int_C \vec{F} \cdot \vec{v} dt = \int_C \vec{F} \cdot \vec{dr}$$

$\vec{T} ds = \vec{v} dt$ $\vec{dr} = (dx, dy, dz)$

$$= \int_C M dx + N dy + P dz$$

Conclude: The four ways of writing the line integral are all equivalent:

$$\int_C \vec{F} \cdot \vec{T} ds = \int_C \vec{F} \cdot \vec{v} dt = \int_C \vec{F} \cdot \vec{dr} = \int_C M dx + N dy + P dz$$

When computing, all roads lead to the same answer

13

Example ② Let C be the parabola

14

$y = x^2$, $0 \leq x \leq 1$. Let $\mathbf{F} = y^2 \mathbf{i} + x \mathbf{j}$.

Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} ds$

Solution: (1) first step is to find a parameterization of C

Set $t = x$. Then $\mathbf{r}(t) = (\underline{x(t)}, \underline{y(t)}) = (\underline{t}, \underline{t^2})$

So $\mathbf{F}(\mathbf{r}(t)) = (\underline{t^4}, \underline{t})$, $\mathbf{v}(t) = (\underline{1}, \underline{2t})$

(2) Use Leibniz differential identities to convert line integral to a Math 21B integral

$$\begin{aligned} \int_C \mathbf{F} \cdot \mathbf{T} ds &= \int_a^b \mathbf{F} \cdot \mathbf{v} dt = \int_0^1 (\underline{y(t)^2}, \underline{x(t)}) \cdot (\underline{1}, \underline{2t}) dt \\ &= \int_0^1 (\underline{t^4}, \underline{t}) \cdot (\underline{1}, \underline{2t}) dt = \int_0^1 t^4 + 2t^2 dt \\ &= \left[\frac{t^5}{5} + \frac{2t^3}{3} \right]_0^1 = \frac{1}{5} + \frac{2}{3} = \frac{13}{15} \end{aligned}$$

Note: we could just as well use

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_C \vec{F} \cdot d\vec{r} \quad \text{or} \quad \int_C \vec{F} \cdot \vec{T} \, ds = \int_C M \, dx + N \, dy + P \, dz$$

to compute - they lead to same t-integral

Example: We had $\vec{F} = (\overrightarrow{y^2}, \overrightarrow{x})$, $\vec{r}(t) = (\overrightarrow{t}, \overrightarrow{t^2})$
 $0 \leq t \leq 1$

So $\int_C \vec{F} \cdot d\vec{r} = \int_C (\overrightarrow{M}, \overrightarrow{N}) \cdot (\overrightarrow{dx}, \overrightarrow{dy})$

$$d\vec{r} = (\overrightarrow{dx}, \overrightarrow{dy}, \overrightarrow{dz}) \quad \vec{F} = (\overrightarrow{M}, \overrightarrow{N}) = (\overrightarrow{y^2}, \overrightarrow{x})$$

$$= \int_C M \, dx + N \, dy = \int_C y^2 \, dx + x \, dy$$

But $x = t$ so $dx = dt$, $y = t^2$ so $dy = 2t \, dt$

$$\Rightarrow = \int_C t^4 \, dt + t \cdot 2t \, dt$$

$$= \int_0^1 t^4 + 2t^2 \, dt = \dots = \frac{13}{15}$$

same integral

Example ③ A simple closed

curve is a curve $\vec{r}(t)$, $a \leq t \leq b$ which is closed ($\vec{r}(a) = \vec{r}(b)$) and simple means it does not cross itself.

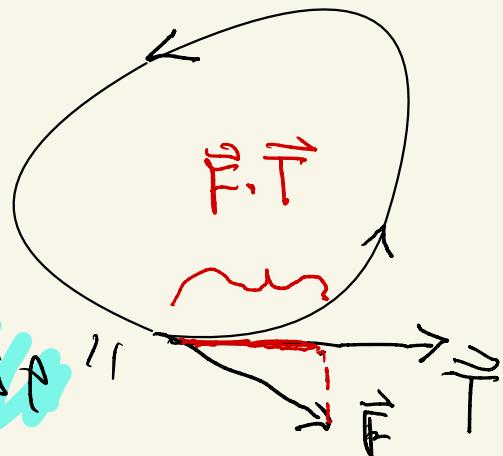
E.g. Circle $\vec{r}(t) = (\cos t, \sin t)$, $0 \leq t \leq 2\pi$ is a simple closed curve (SCC)

Defn: The line integral of \vec{F} around a closed curve C is called the circulation in \vec{F} around C

I.e., $\oint_C \vec{F} \cdot \vec{T} ds$ measures

the total amount of \vec{F}

pointing (counterclockwise)



Example ③ (cont) Let C be the circle of radius 2, center $(0,0)$, oriented counter-clockwise. Let $\vec{F} = (x-y)\vec{i} + x\vec{j}$. Find the circulation in \vec{F} around C . 17

Solution: ① Get a parameterization:

$$\text{So } \vec{r}(t) = 2(\cos t, \sin t), \quad 0 \leq t \leq 2\pi$$

$$\textcircled{2} \text{ Circulation} = \int_C \vec{F} \cdot \vec{T} \, ds$$

③ Use Leibniz differentials to set up Math21D integral:

$$\int_C \vec{F} \cdot \vec{T} \, ds = \int_0^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{v}(\vec{r}(t)) \, dt$$

$$\vec{F}(\vec{r}(t)) = (\vec{r}(t) - \vec{u}(t), \vec{v}(t)) = 2(\cos t - \sin t, \cos t)$$

$$\vec{v}(t) = \vec{r}'(t) = 2(-\sin t, \cos t)$$

$$\vec{F} \cdot \vec{v} = 4(\cos t - \sin t, \cos t) \cdot (-\sin t, \cos t) = 4(-\cos t \sin t + 1)$$

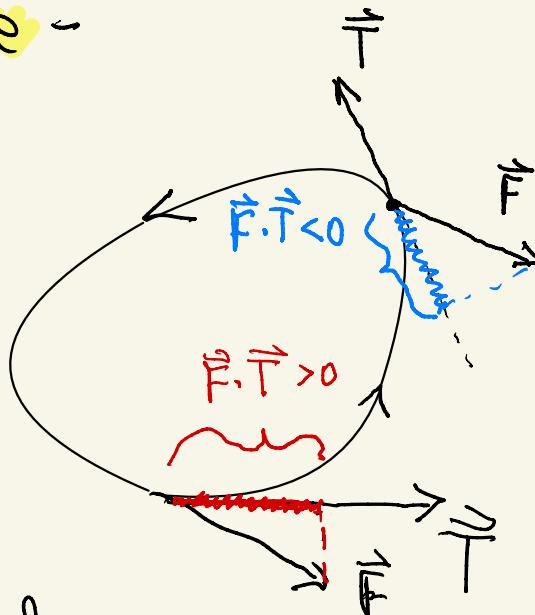
$$\textcircled{4} \int_0^{2\pi} \vec{F} \cdot \vec{v} \, dt = 4 \int_0^{2\pi} 1 - \cos t \sin t \, dt = 4 \left[t + \frac{\cos^2 t}{2} \right]_0^{2\pi} = \boxed{8\pi}$$

Q: If \vec{F} were the force on a frictionless bead confined to a wire circle in Example 3, which way would the bead circulate?

18

Ans: If $\oint \vec{F} \cdot \hat{T} ds > 0$, the "net force on

bead is counter-clockwise - if negative, the net force is clockwise -



Since we calculated

$$\oint \vec{F} \cdot \hat{T} ds = 8\pi > 0,$$

the bead would rotate counter-clockwise!